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Abstract

Some chemical plants such as plug-flow tubular reactors have highly nonlinear behavior. Such processes demand a powerful identification
method such as a neural-networks-based Wiener model. In this paper, a plug-flow reactor is simulated in a rather realistic environment by HYSYS,
and the obtained data is in connection with MATLAB for identification and control purpose. The process is identified with NN-based Wiener
identification method, and two linear and nonlinear model predictive controllers are applied with the ability of rejecting slowly varying unmeasured
disturbances. The results are also compared with a common PI controller for temperature control of tubular reactor. Simulation results show that the
obtained Wiener model has a good capability to predict the step response of the process. Parameters of both linear and nonlinear model predictive
controllers are tuned and the best-obtained results are compared. For this purpose, different operating points are selected to have a wide range of
operation for the nonlinear process. It is shown that the nonlinear controller has the fastest damped response in comparison with the other two

controllers.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There are very few design techniques that can be proved
to stabilize processes in the presence of nonlinearities and
constraints. Model predictive control (MPC) — a model-based
optimal control method — has been one of the successful con-
trollers in manufacturing industries for the past two decades
[1]. MPC refers to a class of computer control algorithms that
control the future behavior of a plant through the use of an
explicit process model. At each control interval, the MPC algo-
rithm computes an open-loop sequence of manipulated variable
adjustments in order to optimize future plant behavior. The first
input in the optimal sequence is injected into the plant, and the
entire optimization is repeated at subsequent control intervals
[1]. By now, the application of MPC controllers based on lin-
ear dynamic models cover a wide range of applications, and
linear MPC theory can be considered quite mature. Neverthe-
less, many manufacturing processes are inherently nonlinear and
there are cases where nonlinear effects are significant and can-
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not be ignored. These include at least two broad categories of
applications [1]:

1. Regulator control problems where the process is highly non-
linear and subject to large frequent disturbances (pH control,
etc.).

2. Servo control problems where the operating points change
frequently and span a wide range of nonlinear process dynam-
ics (polymer manufacturing, ammonia synthesis, etc.).

In fact higher product quality specifications and increasing
productivity demands, tighter environmental regulations and
demanding economical considerations require to operate sys-
tems over a wide range of operating conditions and often near
the boundary of the admissible region [2]. Besides, the oper-
ating point in some batch processes is not in steady-state and
all of the operations are performed in transient conditions [3].
Under these conditions linear models are often not sufficient to
describe the process dynamics adequately and nonlinear models
must be used.

In recent years, several nonlinear model predictive control
(NMPC) techniques from identification as well as control points
of view are addressed for different processes in literatures.
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Among these techniques, neural networks play important role
especially in the identification phase of NMPC algorithms due
to their ability to learn by example [4—10]. Moreover, they also
have the ability to learn the frequently complex dynamic behav-
ior of a physical system. For an overall review on the application
of neural networks in the control of chemical processes, the inter-
ested readers may refer to [11]. For example in Ref. [5], neural
networks are used to develop a model for highly nonlinear CSTR
and pH neutralization processes. A nonlinear internal model
controller is designed based on these models and results are com-
pared with a PID controller. In Ref. [6], an RBF neural network
is used for modeling and control of an unstable CSTR process.
The use of neural network for modeling of a CSTR process has
also been reported in Ref. [7], where the controller is designed
using classical optimization methods. The main problem with
neural network as a model is that it performs well in the range
of the data used for training the network, but has poor extrap-
olation property in other regions. To cope with this problem,
dynamic nonlinear models are proposed [4,8]. The use of Wiener
models where a linear dynamic model is followed by a static
nonlinearity is one of the solutions. Several NMPC methods for
pH neutralization and CSTR processes using Wiener model is
addressed in [12—14]. For example in Refs. [12,13], a static non-
linear term is used to model the inverse of the nonlinearity of
the plant and is selected as a polynomial with proper degree.
Besides, in Ref. [14], the nonlinear term and its inverse are
modeled using piecewise linear method. In Ref. [15], a nonlin-
ear combination of Laguerre models followed by a single-layer
neural network is introduced as an efficient nonlinear identifi-
cation method used in MPC applications. The capability of this
technique is showed by the identification of some highly non-
linear plants including pH and CSTR. In Ref. [16], a MIMO
Wiener model of a polymerization reactor is identified and the
model is used in an MPC scheme. The quality of proposed con-
troller is also compared with that of linear MPC. This algorithm
is based on the PI-MOESP method for the estimation of system
matrices of the linear part [17]. In Ref. [18], a distillation col-
umn simulation model is used as a benchmark to demonstrate
the benefits of a Wiener model based identification and control
methodology. The results show the capability of this technique
in identifying nonlinear ill-conditioned plant compared to exist-
ing linear techniques. Despite the fact that many manufacturing
systems are nonlinear, however they have been controlled by
PIDs. However, because of the tuning and robustness difficulties
of PID controllers as reported in Refs. [19,20], a more reli-
able controller based on nonlinear model of the process may be
needed.

In this paper, a nonlinear model predictive control is pro-
posed based on classic optimization methods with nonlinear
identification using Wiener model for a highly nonlinear plug-
flow tabular reactor. Because of the capability of Wiener model
structure in comparison with Hammerstein models in capturing
complex nonlinear dynamics, a Wiener structure with a state-
space model in linear part and neural networks in nonlinear part
is selected. Both these parts are parameterized and an overall
optimization is performed on the parameters based on collected
data. This Wiener structure and identification technique is dif-

ferent from those reported in the literature [e.g. 12—18]. The
results of identification and control are also compared with lin-
ear MPC and classical PI controller to show the superiority of
the proposed method. In addition, to have more realistic simu-
lations, the model of process is simulated in HYSYS, and the
data is transferred (real-time) to MATLAB for identification and
control purposes. After this introduction, the theory of Wiener
identification using neural network as the static nonlinear term
is presented. Also selection of the test signal to achieve the
best result for identification is studied. In Section 3, the design
of nonlinear model predictive control based on the identified
Wiener model is presented. Simulation results for identification
and control of plug-flow tubular reactor are given in Section 4.

2. NN-based Wiener identification
2.1. Wiener identification

Among the nonlinear black box models, the block-oriented
models are efficient structures in nonlinear modeling. These
models consist of a series connection of alinear dynamic element
and a static nonlinear element.

A Wiener model consists of a dynamic linear block (H1) in
cascade with a static nonlinearity at the output (H2), as shown
in Fig. 1. Here z(k) € R' is an intermediate signal that does not
necessarily have a physical meaning. On the other hand, in the
Hammerstein model the static input nonlinearity precedes the
linear block.

In certain respects, Hammerstein models are very similar
to the linear models on which they are based. For example, if
u(k) is a piecewise constant input sequence [e.g. pulses, steps,
pseudo-random binary sequences (PRBS), etc.], for any static
nonlinearity the intermediate variable sequence will also be a
piecewise constant sequence with the same general character
(specifically, with transitions at the same instants as u(k), but
assuming different values). Hammerstein models have been con-
sidered as alternatives to linear models in a number of chemical
process applications [21].

In particular, while Hammerstein and Wiener models exhibit
exactly the same steady state behavior, the differences in their
transient responses can be quite significant. As a specific exam-
ple, the general character of the step response can change with
the sign and/or magnitude of the input step, unlike the case of the
Hammerstein model, where this general character is determined
entirely by the linear part [21]. Because of this behavior and the
capability of modeling complex nonlinear dynamics by Wiener
models led us to the selection of this model structure.

State-space representation of a Wiener model can be stated
as follows:

x(k + 1) = Ax(k) + Bu(k), z(k) = Cx(k) + Du(k),

(k) = f(z(k)) + v(k) (1)
u(k) - 2(k) 2 (k)

Fig. 1. The Wiener model.
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where x(k) is the n x 1 state vector at time k, u(k) the m x 1

vector of control input, y(k) the [ x 1 vector of measured output,
and v(k) is a measurement noise assumed to be zero-mean and
independent of u(k)for all k£’s. The system matrices A, B, C and
D are real with proper dimensions and f{-) is a nonlinear vector
function defined on R! — R'. The sequences of input and output
data used for identification of (1) are available. Besides, it is
assumed that the input sequences {u(k)} are persistently exciting
[22] and statistically independent of noise sequences {v(k)}. The
systematic approach for identification of the above problem is
stated completely in Ref. [23]. The first step is identification of
linear part using state-space methods. So assuming the nonlinear
mapping as an identity, the linear dynamics characterized by
quadruple (A, B, C and D) will be identified. Then using the
identified matrices (A, B, C and D), the output sequences of this
LTI system {Z(k)},’c\'=1 will be computed. With this sequence, a
primary identification of the nonlinear part of the Wiener model
can be estimated. Here, this static nonlinear term is identified
using a single layer neural network with the following structure:

v

fizk) =

i=1

I
als,Dp | Y _B(s, i, )z;(k) + bs, i)

j=1

+b(s, v+ 1) + g5(k) 2)

where f;(-) and zs(k) are used to characterize the sth input and
output of the nonlinear term. Besides, «(s, i), B(s, 1, j), b(s, i) and
b(s, v + 1) are unknown real coefficients stacked in the parame-
ter vector @ € R{*2v+1) and must be estimated using nonlinear
least square methods. v is the number of neurons in the hidden
layer and the last term e(k) shows the estimation error. The cost
function minimized for estimation of 0 is:

v
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Finally, the best parameters for the linear and nonlinear parts
are identified with an optimization algorithm. For this purpose,
the system matrices identified for the linear part and the param-
eter vector estimated for the nonlinear part are used as initial
conditions for the calculation of the final parameters. Despite
the parameter vector defined for the nonlinear part, a full param-
eterization of the Wiener model in (1) requires that the system
matrices (A, B, C and D) and also the vector of initial condi-
tions x(1) be included in the parameter vector. To have minimum
parameters for the matrices, the pair (A and C) must be trans-
formed with similar transformations to what is called an output
normal form.

Definition. The pair (A and C) of the system matrices (A, B,
C and D) is in output normal form if ATA +CTC =1, where
I,, € R"*" is an identity matrix. The above definition explicitly
shows that matrix A must be asymptotically stable. In order
for the state space description of the system to be unique, the
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matrices A and C are transformed such that be lower

triangular with positive elements in the diagonal. After these
transformations, the parameterization can be performed using
nl parameters. More details about this method of parameter-
ization can be found in Refs. [24,25]. All parameters of the
system matrices after this parameterization are stacked in the
vector 0,p,. The estimation of all parameters of the parameterized
Wiener system can be obtained by minimizing this performance
index:

2

N
= Z ly(k) — $(k, x(1), Oon, O) | “
k=1

min
x(1),00,,0

where N is the number of samples used for identification.
To obtain all parameters of the system, the above least
square minimization must be solved. The method used here is
Levenberg—Marquardt which tries to find the local minima of the
performance index iteratively. If @ is the vector of all param-
eters, by defining e(®) = y — (@), where e(®) is the error
between the target and output vector, the parameters of (@) can
be updated in each iteration. Suppose the value of these param-
eters at iteration ¢ of Levenberg—Marquardt algorithm is shown

by ©(7), then this algorithm can be stated as follows:
O¢+1)=00)+ A0®) 5)

where A is obtained by solving this set of nonlinear equations:

AT OI®) + pDA® = —JTe(O(1) ©)
and J(¢) is the Jacobian matrix with these derivatives:
2
+b(1,v+1)
(3)
+bl,v+1)
Ji/::M, i=1: N, j=1: length(O). ©)]
’ 39]'

The tuning parameter p € (0,00) is called the Levenberg fac-
tor and is necessary for convergence of the algorithm.

Although normalized gradient descent method has the fastest
convergence response among gradient descent techniques, but
its convergence speed is lower than that of Newton method [26].
Because of the computational complexity of Newton methods,
Levenberg—Marquardt takes the advantages of Newton method
with lower computation [26]. By setting  to zero, the fast
convergence of Gauss—Newton iteration for small residual prob-
lems is achieved. If u is too small, the algorithm may diverge.
The choice of p in an adaptive manner will have some ben-
efits. For big values of u, the convergence is very slow. The
algorithm tries to keep p as small as possible. If the cost
function decreases, the current step is accepted, and the ratio
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of the actual decrease compared to the predicted decrease is
checked. Then u is decreased if the ratio was acceptable and
increased otherwise. If the cost function increases, the step
is rejected and calculations are repeated with an increased w
[26].

The derivatives in (7) are calculated analytically for the
nonlinear part, and are approximated using forward difference
method for the linear part [25]. All identification procedures are
performed using SLICOT toolbox [25].

2.2. Test design

Some important factors which must be considered in design-
ing the identification test for nonlinear systems are: the duration
of the test signal, its amplitude and shape, its spectrum (the
average switching time), the correlation of the test signal in
each channel, and the number of manipulated variables in each
test.

Traditionally, pseudo-random binary sequences (PRBS) are
used as the inputs to a system in order to produce represen-
tative sets of data to be analyzed. In theory, a PRBS excites
the range of dynamics present in a system so that a dynamic
model can be produced which contains these dynamics. This
is not sufficient, however, for fitting a Wiener model. Since
these models have nonlinear gains, an input signal must be
used which also demonstrates the response of the system to a
range of amplitude changes. A signal that satisfies these crite-
ria is a GMN [27] or a modified PRBS signal [13] which, in
addition to random frequency, also exhibits random amplitude
changes.

Since in nonlinear systems the test time depends mainly on
the number of parameters in the model and the level of noise
and unmeasured disturbances, longer test time is recommended
in comparison with linear systems. This is typically considered
about 16-25 times the settling time of the process. Other factors
may be included by choosing one of the following excitation
signals [27]:

I. Staircase test. In this type of test, the width of the pulses
and their numbers must be selected properly.

II. Generalized multiple-level noise (GMN). This type of test is

a multi-level extension of generalized binary noise. In this

x(k+1)=Ax(k)+Bu(k)
z(k)=Cx(k)+Du(k)

I

Fig. 2. The Wiener model for NMPC.

u(k)

test the amplitude and the number of pulses must be selected
suitably. The number of levels on this test is equal or greater
than the degree of the nonlinear polynomial to be identified.
Moreover, the average switching time of the test can be
obtained from Ty = T/3, where T is 98% of the process
settling time.

Il. Filtered white uniform noise. The flexibility in shaping the
spectrum of this type of signal is its main advantage. Each
spectrum may be realized with a proper filter. A first order
low-pass filter is often suitable for this purpose.

3. Nonlinear model predictive controller

If at time k, the future state and behavior of the plant is
assumed to be known, they can be written in vector form in
MIMO case as follows:

2k) = [T+ 1) Tk+2) T+ Pt ®)
u) = [uTk+ 1) Tk +2) Tk + )1 ©)
vk =Tk +1) YTk +2) Ytk + )1 (10)
() = [Tk +1) rT(k+2) T+ P)1 (11

where z(k) is the vector of the linear model outputs, u(k) the
vector of manipulating variables, y(k) the vector of the Wiener
model outputs shown in Fig. 2, and r(k) is the vector consisting
set points.

Also M and P are the control and prediction horizons, respec-
tively. The predicted output of the linear model can be written
as

i(k) = pu(k) + x(k) 12)

where B, & and (k) are defined by

CB D 0 0 0
CAB CB 0 0
CAM-1B CAM-2B CAM3B cCcAM—B ... D

P=1 CAMB CAM-'B CAM2B CAM-B D+CB (13)

CAP-'B

CAP2B CAPB cCA’“B

P
D+ > CA"'B
i=M+1
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CA?

g£=| CAM (14)
CAM—H

CA?

) = [T uT)1" (15)
Besides, the predicted output of the Wiener model is given
by
[ fGK+1) ]
Gk +2)

FEEE3D | = rak)) (16)

| f@k+ P)) |

Finally, by solving and minimizing the following optimiza-
tion problem the control signal applied to the process can be
obtained:

min J
u(k+1),u(k+2),...,u(k+M)

P M
=D 15k + j) = rtolig + D _llAutk + )i

j=1 J=1
M
+Y llutk + ik (17)
j=1
where
Autk+ ) =ulk+j)—ulk+j—1) (18)

In (17), Q and S are the weighting matrices for the output
and rate of change of the control input and R is the weighting
matrix for manipulated variable. In addition, it is assumed that:

uk+ j)=uk+M) j=M+1...P (19)

In this optimization problem the eligible limits for the control
input and its rate of change, and also those for the output signal
may be considered with these inequalities:

Upin < WK) < Wpax Vk
dupip < uk) —uk — 1) < dupax Vi (20)
Ymin =¥ (k) = ¥Ymax Vk

The optimization problem stated above can be solved with
Successive Quadratic Programming (SQP) method. It is impor-
tant to notice that the optimization time must be less than the
sampling time of the process so that the obtained control signal
can be applied to the process.

To compensate the eventual mismatch between the process
and its model, and in order to consider unmeasured disturbances

in the process, a term must be added to the predicted output of
the plant [7], like:

d(k) = y(k) — yn (k) 2

where y(k) is the output of the real process, and ypy (k) is the
model output. The modified predicted output will be:

Ypredtk + 1) =¥k +i) +d(k) fori=1,.... P (22)
4. Simulation results
4.1. Identification results

Reactors are the heart of many chemical processes, and
dynamic simulation of these critical units is absolutely essen-
tial for the safe and profitable operation of the entire plant [28].
There are a tremendous number of different types of reactors
that are used commercially. Reactors in which exothermic, irre-
versible reactions take place are the most challenging because
of the potential for temperature runaways. The chemical and
petroleum industries have experienced a number of devastating
fires, explosions and emissions of toxic material during the last
century caused by chemical reactors. Many of these could have
been prevented by better design and operation. Therefore, reac-
tor dynamics and control are probably the most vital parts of
dynamic simulations [28].

Many industrial processes use tubular reactors, particularly
those in which a solid catalyst is required. The typical tubular
reactor has a vessel that is packed with solid catalyst. The impor-
tant difference between CSTR reactors and tubular reactors is
the distributed nature of latter: temperature and composition vary
down the length of the tubular reactors, and they also vary with
time. This makes the models and the dynamics more complex.

The case study considered in this paper is the chlorination
of propylene. The model of the process is simulated numeri-
cally with HYSYS 3.1 software, and its nominal parameters are
selected based on the data given in Ref. [28]. For control pur-
pose, HYSYS is connected to MATLAB 7.1 using HYSYSLIB
toolbox with some modifications [29] to have more access to the
desired variables.

The process contains two parallel gas phase reactions. The
first forms allyl chloride and HCL.:

C3Hg + Cl, — CH; = CH-CH,Cl + HC1 (23)
and the second forms 1,2-dichoro propane:
C3Hg + Cl, — CH,CI-CHCI-CH3 24)

Reaction rates have a first-order dependence on the par-
tial pressure of the reactants. Using English units in HYSYS,
the reaction rates are given in Ib mol/h ft3, with temperature in
Rankin, activation energy in Btu/Ib mol, and pressure in atmo-
spheres:

Ry = ki Pc3 Poy, = (2.06 x 10% e 727 200/RT) poy py. (25)

Ry = ko Py Per, = (11.7e80/RT py pey, (26)
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Fig. 3. Schematic representation of the plug-flow tubular reactor process.

If reactor is operated adiabatically, the temperature of the gas
leaving the reactor is predicted by HYSYS to be 716 °F, and
the chlorine concentration is 9.89 mol% (50% conversion). Sev-
eral cases are considered in this section with varying types and
amounts of heat transfer. In these cases the outlet temperatures
are different, as are the conversions of chlorine. A control valve
on the gas feeding the reactor is designed for a 20 psi drop when
50% open at design flow rate. A flow controller manipulates
this valve to control feed flow. A valve on the exit line from
the reactor is used to hold pressure in the reactor. This valve is
designed for a 10 psi pressure drop when 50% open at design
flow rate. In this paper, the use of tubular reactor without catalyst
is considered.

In Ref. [28], two methodologies for temperature control of
reactor are proposed. The first case uses the direct Q model, and
the second case, available in HYSYS and used here, is one in
which a coolant is used.

The aim is to control the temperature of the output liquid of
the reactor (Tr3ou¢) by manipulating the coolant flow (Q3). The
nominal parameters of output temperature and cooling fluid flow
rate are 272.4 °C and 0.5882 kg mol/h, respectively. The process
is schematically depicted in Fig. 3.

Moreover, the feed flow of v5out is considered as the unmea-
sured disturbance of the process. In order to have a more realistic
simulation of plug-flow reactor and to be able to tune the control
parameters reliably for real applications, the important parame-
ters to specify the heat-transfer information are given in Table 1;
these must be known in advance.

The remaining parameters are calculated from those speci-
fied. Note that the temperature level of the cooling fluid is too
high to use cooling water. A high temperature fluid, such as
DowTherm, would be used to cool this reactor. Fig. 4 shows the
open-loop response of the process for £20% step change in flow
Q3. It can be seen that the process is highly nonlinear and the
steady-state gain for —20% changes is about 25% greater than
that for +20%.

Table 1
Heat-transfer and coolant flow information of plug-flow reactor

Simulation parameters Nominal value

Heat capacity of the coolant 75.00kJ/kg mol-C

Inlet temperature of cooling fluid 204.4°C
Available UA 149.08 kJ/C-h
Utility holdup 0.5126 kg mol
Mole flow (cooling flow rate) 0.4429 kg mol/h
Min flow (cooling flow rate) 0kg mol/h

Max flow (cooling flow rate) 1.361 kg mol/h

To identify this process, a GMN signal at eight levels: 0, 0.3,
0.5882, 0.7, 0.9, 1.1, 1.2 and 1.361 is generated in MATLAB
as the excitation signal. The average switching time between
these levels is selected as 20 samples. This signal is applied as
the input signal to the process modeled in HYSYS. Input and
output data are gathered with sampling time of 1 min, and 2000
samples are used for identification purpose. Fig. 5 shows the
input (coolant flow) and output (outlet reactor temperature) data
collected for identification of the process.

The identification has been performed using the above-
mentioned Wiener model with four neurons in the hidden layer.

To get a better view of how to select the number of hidden
neurons, the steady state nonlinear gain of the process simulated
in HYSYS is plotted Fig. 6. The nonlinear gain of the Wiener-
neural model is also calculated and plotted in the same figure for
comparison. The result for three, four and five hidden neurons
is shown in this figure. It can be seen that the four-neuron model
will result in the best match especially for low input amplitude.
The obtained models are used in an NMPC scheme and the mean
absolute error (MAE) of the controlled variable is calculated.
These results also confirm that a four-neuron Wiener model is
the best choice.

One thousand and five hundred samples of data are selected
for identification, and the rest are used for validation of the
obtained model. The validation of the identified model is shown
in Fig. 7. To have a better validation, the step responses of the
actual process and the identified model are shown in Fig. 8. It
can be seen that the fitting of the Wiener model is very good for
both cases.
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Fig. 4. Open-loop step-response of the plug-flow tubular reactor for changes in
the coolant flow.
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Fig. 6. Nonlinear steady state gain of Wiener model for different hidden layer
neurons.

4.2. Control results

Setpoint tracking behavior of the regulator (closed-loop) sys-
tem with NMPC, along with the coolant flow signal is shown
in Fig. 9. It can be seen that the response shows a good track-
ing speed and low overshoot for all operating points. Also the
control signal has a reasonable amplitude and rate of change
with respect to constraints applied for optimization. Besides, the
comparison of this result with linear MPC and PI controllers is
shown in Fig. 9. It can be seen that the results approve the higher
performance of the NMPC for different operating conditions,
especially when it is far from the point where the linear model is
identified. The prediction and control horizons are tuned by trial
and error at 10 and 35, respectively. The weighting matrices are
selected as Q=1300, S=150 and R=1000. Also a lower limit
of Okgmol/h and an upper limit of 1.361 kg mol/h are chosen
for imposing saturation constraints for the manipulated variable,
and the corresponding values for rate of change of manipulated
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Fig. 7. Validation results for the identified NN-based Wiener model.

Fig. 8. Step response of the Wiener model for changes in the coolant flow.



M.M. Arefi et al. / Chemical Engineering Journal 138 (2008) 274-282 281

&0' 300 T T T T T
2]
5 2001 -
o
a 20 P INS = Setpoint
£ ——NMPC
[q_" 270 1 i !ﬁ e L MPC ]
- i e i
2 260 - L e Pl controller |
§ 250 1 1 1 1 1

5
x 0 100 200 300 400 500 600
§ I I I—NMPC
g e LMPC
o === P| controller ||
=
3 o |
o
[T
€ 0 i
©
©
o | I 1 1 1
© os0 100 200 300 400 500 600

Time (Min)

Fig. 9. Up: the performance of NMPC when tracking set-point in tubular reactor; down: the corresponding inlet coolant flow.

Table 2
Different criteria for applied controllers in set-point tracking
Criteria Controller

NMPC MPC PI
MAE 1.2031 1.3544 1.9712
SAE 721.8633 812.6548 1182.7
MSE 18.3394 20.0719 19.5969
SSE 11,004 12,043 11,758

variable are +0.2 kg mol/h. In Table 2, different criteria for dif-
ferent controllers are compared. As can be seen, the NMPC
shows better performance compared to the other two contro-
llers.

The computation time required for generating the control sig-
nal in the NMPC simulation is shown in Fig. 10. As can be seen
in this figure, the maximum computation time for optimization
is 0.5108 s which is sufficiently below the chosen sampling time

0.86 . ‘ CPU ITlme
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Fig. 10. Computation time of the CPU for SQP optimization.

unmeasured disturbance rejection of different controllers
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Fig. 11. The performance of the NMPC controller in rejecting unmeasured
disturbance.

of 1 min for the process. The SQP optimization is performed
using the fmincon function of MATLAB.

The performance of different controllers in rejecting +20%
changes in the feed flow as the unmeasured disturbance is shown
in Fig. 11. These results show the capability of the proposed
NMPC controller in rejecting unmeasured disturbances.

5. Conclusions

In this paper, a nonlinear model predictive control for a
tubular reactor process is simulated. This process has strong non-
linearity and wide range of operating points. These properties
make the linear MPC techniques unsuitable and hence demand
a more complex identification and controller design procedure.
The process is simulated in a realistic environment with HYSYS
for gathering required data, and is connected with MATALB for
identification and control purposes.
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A Wiener model is chosen with neural network as the static
nonlinear term. Simulation results from the identification phase
approve the validation of the identified model. Besides, the step
responses of the plant and the identified model are in good
agreement. This shows the ability of this type of model struc-
ture for modeling such a highly nonlinear process. Simulation
of the NMPC in HYSYS for a wide range of operating points
shows superior performance of the NMPC compared to the lin-
ear MPC and PI controllers. This is especially true when the
operating condition of process is far from the point where the
model for linear MPC is identified. Results show that in such
conditions the linear MPC and PI controllers fail to follow the
set point adequately, while the nonlinear MPC exhibits a desir-
able fast response with smoother changes in the control effort.
Simulations also confirm that the designed controllers have the
capability to reject slowly varying unmeasured disturbances
which are common happens in chemical processes.
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